
Section 16.2
Line Integrals

Scalar Line Integrals

Vector Line integrals

Work as a Vector Line Integral



1 Scalar Line Integrals



Scalar Line Integrals
Let C be a smooth curve in R2, and let f (x , y) be a scalar-valued
function.

The line integral
ˆ
C
f (x , y) ds is defined as the net area under the graph

of f and over C.
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When f (x , y) < 0, the area under C
and over the graph f (x , y) contributes
negatively to the integral.

If C = [a, b] is a segment of the x-axis,

then
ˆ
C
f (x , y) ds =

ˆ b

a

f (x , 0) dx .

Thus, single integrals are special cases
of line integrals.

https://www.geogebra.org/m/b6ab2eum


Scalar Line Integrals

To calculate the area under the surface f (x , y) above a curve C:
(i) Parametrize C by r⃗ (t) for a ≤ t ≤ b.
(ii) Subdivide [a, b] into N subintervals of length ∆t.

Let Pi = r⃗ (t∗i ) be a point in the subcurve Ci on [ti−1, ti ].
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Contributed by Jeremy Martin.

(iii) The length of each subcurve is ∆si ≈ ∥⃗r ′(ti )∥∆t. Let N → ∞ to
get the exact area:

Area =

ˆ
C
f (x , y) ds = lim

N→∞

N∑
i=1

f (Pi ) ∥⃗r ′(ti )∥∆t =

ˆ b

a

f (⃗r (t)) ∥⃗r ′(t)∥dt



Scalar Line Integral Formula
If C is a smooth curve in R2 parametrized by a function r⃗(t), and f is
continuous on C, then

ˆ
C
f (x , y) ds =

ˆ b

a

f
(⃗
r (t)

)
∥⃗r ′(t)∥ dt.

The same formula works for curves in Rn (for n = 2, 3, . . . ):

ˆ
C
f ds =

ˆ
C
f (x1, . . . , xn) ds =

ˆ b

a

f
(⃗
r (t)

)
∥⃗r ′(t)∥ dt

The symbol ds = ∥⃗r ′(t)∥ dt is called the arc length element. It
represents a little bit of the arc length of the curve.



Scalar Line Integrals: Examples

Example 1: Evaluate
ˆ
C

2 + x2y ds, where C is the unit circle.

Solution:

Step 1: Parametrize C by r⃗ (t) = ⟨cos(t), sin(t)⟩ for t ∈ [0, 2π].

Step 2: Calculate ∥⃗r ′(t)∥ =
√
sin2(t) + cos2(t) = 1.

Step 3: The arc length element is ds = ∥⃗r ′(t)∥ dt = dt, so

ˆ
C

2 + xy2 ds =

ˆ 2π

0
2 + cos2(t) sin(t) dt = 4π.



Piecewise-Smooth Curves
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C is piecewise-smooth if C is the union of a
finite number of smooth curves C1, C2, . . . , Cn.
In that case,
ˆ
C
f ds =

ˆ
C1

f ds +

ˆ
C2

f ds + · · ·+
ˆ
Cn

f ds

Example 2: Let C consist of the arc C1 of the parabola y = x2 from
(0, 0) to (1, 1) and the line segment C2 from (1, 1) to (1, 2). Evaluateˆ
C

2x ds.

C1: r⃗1(t) =
〈
t, t2

〉
, 0 ≤ t ≤ 1 C2: r⃗2(t) = ⟨1, 1 + t⟩, 0 ≤ t ≤ 1

∥⃗r1′(t)∥ = ∥⟨1, 2t⟩∥ =
√

1 + 4t2 ∥⃗r2′(t)∥ = ∥⟨0, 1⟩∥ = 1

ˆ
C

2x ds =

ˆ
C1

2x ds+
ˆ
C2

2x ds =

ˆ 1

0
2t

u=1+4t2,du=8tdt︷ ︸︸ ︷√
1 + 4t2 dt︸ ︷︷ ︸

´ 5
1

√
u

4 du= u3/2
6 |51

+

ˆ 1

0
2 dt︸ ︷︷ ︸
2

=
5
√

5 + 11
6



2 Vector Line integrals



An orientation of a curve C is a choice of
direction along the curve.

(“Curve” = I-70; “oriented curve” = I-70
westbound) P = ~r(a)

Q = ~r(b)

r⃗(t)

T⃗

N⃗

The unit tangent vector to C points in the
direction of motion of the parametrization.

T⃗(t) =
r⃗ ′(t)

∥⃗r ′(t)∥

The unit normal vector to C is orthogonal to T⃗:

n⃗(t) =
T⃗′(t)

∥T⃗′(t)∥

Note:
d

dt
(

=1︷ ︸︸ ︷
∥T∥2)︸ ︷︷ ︸
=0

=
d

dt
(T (t) · T (t)) = 2T (t) · T ′(t)︸ ︷︷ ︸

T (t)·T ′(t)+T ′(t)·T (t)

So T (t) ⊥ T ′(t).



Vector Line Integrals

P = r⃗(a)

Q = r⃗(b)
T⃗

T⃗

F⃗

F⃗ · T⃗ is the length of the

projection of F⃗ along T⃗

The tangential component of a vector
field F⃗ at a point P on a curve C is the
part of F⃗ in the direction of the unit
tangent vector:

F⃗(P) · T⃗(P) = ∥F⃗(P)∥ cos(θ)

We can measure “how much F⃗ pushes
an object moving along C” by the
integral of the tangential component:

ˆ
C
(F⃗ · T⃗) ds.

This (scalar) quantity is the vector line
integral of F⃗ along C.



Vector Line Integrals

The vector line integral of a vector field F⃗ over an oriented curve C is
ˆ
C

F⃗ · d r⃗ =
ˆ
C
(F⃗ · T⃗) ds.

To compute the integral, let r⃗ be a parameterization, so that

(F⃗ · T⃗) ds =
(

F⃗ (⃗r (t)) · r⃗ ′(t)

∥⃗r ′(t)∥

)
∥⃗r ′(t)∥ dt = F⃗ (⃗r (t)) · r⃗ ′(t) dt

Vector Line Integral Formula
Let C be an oriented curve with a parametrization r⃗(t) for a ≤ t ≤ b.
Assume that r⃗ is regular, i.e., r⃗ ′(t) ̸= 0 for all t ∈ [a, b]. Then

ˆ
C

F⃗ · d r⃗ =

ˆ b

a

F⃗ (⃗r (t)) · r⃗ ′(t) dt.



The Effects of Reversing Orientation

Let curve C be parametrized both by r⃗(t), a ≤ t ≤ b, and q⃗(u),
c ≤ u ≤ d .

1. Scalar line integrals are the same, no matter whether r⃗ and q⃗ have
the same or opposite orientations:

ˆ
C
f ds =

ˆ b

a

f (⃗r (t)) ∥⃗r ′(t)∥ dt =

ˆ d

c

f (⃗q (u)) ∥q⃗ ′(u)∥ du.

(Principle: The area of a wall is the same on both sides!)

2. Vector line integrals depend on orientation.

Same:
ˆ
C

F⃗ · d r⃗ =

ˆ b

a

F⃗(⃗r (t)) · r⃗ ′(t) dt =

ˆ d

c

F⃗(⃗q (u)) · q⃗ ′(u) du

Opposite:
ˆ
C

F⃗ ·d r⃗ =

ˆ b

a

F⃗(⃗r (t)) · r⃗ ′(t)dt = −
ˆ d

c

F⃗(⃗q (u)) · q⃗ ′(u)du



Example 3: Let F⃗(x , y , z) =
〈
x2, y2, yz

〉
and let C be parametrized by

r⃗ (t) = ⟨cos(t), sin(t), t⟩ on [0, π]. Evaluate
ˆ
C

F⃗ · d r⃗.

Solution:ˆ
C

F⃗ · d r⃗ =

ˆ π

0
F⃗ (⃗r (t)) · r⃗ ′(t) dt

=

ˆ π

0

〈
cos2(t), sin2(t), sin(t)t

〉
· ⟨− sin(t), cos(t), 1⟩ dt

=

ˆ π

0
− sin(t) cos2(t)dt︸ ︷︷ ︸
u=cos(t), du=− sin(t)dt

+

ˆ π

0
sin2(t) cos(t)dt︸ ︷︷ ︸
u=sin(t), du=cos(t)dt

+

ˆ π

0
t sin(t) dt︸ ︷︷ ︸

u=t, dv=sin(t)dt

=
cos3(t)

3
+

sin3(t)

3
− t cos(t) + sin(t)

]π
0

= π − 2
3



Notation for Line Integrals

Let F⃗(x , y , z) = ⟨P(x , y , z),Q(x , y , z),R(x , y , z)⟩ be a vector field and C
a curve parametrized by r⃗ (t) = ⟨x(t), y(t), z(t)⟩ for [a, b]. There are
many different ways to write the line integral of F⃗ over C:

Vector Differential Form:
ˆ
C

F⃗ · d r⃗ =
ˆ
C

F⃗ · T⃗ ds

Parametric Vector Evaluation:
ˆ b

a

F⃗
(
x(t), y(t), z(t)

)
· r⃗ ′(t) dt

Parametric Scalar Evaluation:ˆ b

a

(
P(x(t), y(t), z(t))x ′(t) + Q(x(t), y(t), z(t))y ′(t) +

R(x(t), y(t), z(t))z ′(t)

)
dt

Scalar Differential Form:
ˆ
C
P dx + Q dy + R dz



3 Work as a Vector Line Integral



Work as a Line Integral

Let C be a smooth curve parametrized by r⃗ (t) on [a, b]. Let F⃗ be a
continuous vector field over a region containing C.

If F⃗ measures force, then the work done on an object that moves from
r⃗ (a) to r⃗ (b) along C is ˆ

C
F⃗ · d r⃗.

Work measures the energy expended by the field in moving the
object,
Work can be negative (which indicates that the object expends
energy in moving against the field).

If F⃗ is constant, then work is just F⃗ ·
−→
PQ, where P = r⃗(a) and

Q = r⃗(b).



Flux Across a Plane Curve (Optional)
Work is the integral of force along a curve C (in the tangent direction).

What about the integral of F⃗ across C (i.e., in the normal direction)?

Suppose C is parametrized by r⃗ (t) = ⟨x(t), y(t)⟩. Then

n⃗(t) =

N⃗︷ ︸︸ ︷
⟨y ′(t), −x ′(t)⟩

∥⃗r ′(t)∥

is a unit normal vector to C at r⃗ (t). (So is −n⃗(t).)

The flux across C is the line integral of the
normal component F⃗ · n⃗:

ˆ
C

F⃗ · n⃗ ds =

ˆ b

a

F⃗ (⃗r (t)) · N⃗(t) dt

Flux measures flow of the field across C in the
direction of n⃗.
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