# Section 16.2 Line Integrals

Scalar Line Integrals

Vector Line integrals

loseph Phillip Brennan Jila Niknejad

Work as a Vector Line Integral

## 1 Scalar Line Integrals

## Joseph Phillip Brennan Jila Niknejad

### Scalar Line Integrals

Let C be a smooth curve in  $\mathbb{R}^2$ , and let f(x, y) be a scalar-valued function.

The line integral  $\int_{C} f(x, y) ds$  is defined as the net area under the graph of f and over C.



 When f(x, y) < 0, the area under C and over the graph f(x, y) contributes negatively to the integral.

• If 
$$C = [a, b]$$
 is a segment of the x-axis,  
then  $\int_{C} f(x, y) ds = \int_{a}^{b} f(x, 0) dx.$ 

Thus, single integrals are special cases of line integrals.

#### Scalar Line Integrals

To calculate the area under the surface f(x, y) above a curve C:

- (i) Parametrize C by  $\vec{r}(t)$  for  $a \le t \le b$ .
- (ii) Subdivide [a, b] into N subintervals of length  $\Delta t$ .

Let  $P_i = \vec{r}(t_i^*)$  be a point in the subcurve  $C_i$  on  $[t_{i-1}, t_i]$ .



(iii) The length of each subcurve is  $\Delta s_i \approx \|\vec{r}'(t_i)\|\Delta t$ . Let  $N \to \infty$  to get the exact area:

Area = 
$$\int_{\mathcal{C}} f(x, y) ds = \lim_{N \to \infty} \sum_{i=1}^{N} f(P_i) \| \vec{r}'(t_i) \| \Delta t = \int_{a}^{b} f(\vec{r}(t)) \| \vec{r}'(t) \| dt$$

#### Scalar Line Integral Formula

If C is a smooth curve in  $\mathbb{R}^2$  parametrized by a function  $\vec{r}(t),$  and f is continuous on C, then

$$\int_{\mathcal{C}} f(x,y) \, ds = \int_a^b f(\vec{r}(t)) \, \|\vec{r}'(t)\| \, dt.$$

• The same formula works for curves in  $\mathbb{R}^n$  (for n = 2, 3, ...):

$$\int_{\mathcal{C}} f \, ds = \int_{\mathcal{C}} f(x_1, \ldots, x_n) \, ds = \int_a^b f(\vec{r}(t)) \, \|\vec{r}'(t)\| \, dt$$

• The symbol  $ds = \|\vec{r}'(t)\| dt$  is called the **arc length element**. It represents a little bit of the arc length of the curve.

#### Scalar Line Integrals: Examples

**Example 1:** Evaluate 
$$\int_{\mathcal{C}} 2 + x^2 y \, ds$$
, where  $\mathcal{C}$  is the unit circle.

Solution:

**Step 1:** Parametrize C by  $\vec{r}(t) = \langle \cos(t), \sin(t) \rangle$  for  $t \in [0, 2\pi]$ .

**Step 2:** Calculate 
$$\|\vec{r}'(t)\| = \sqrt{\sin^2(t) + \cos^2(t)} = 1$$
.

**Step 3:** The arc length element is  $ds = \|\vec{r}'(t)\| dt = dt$ , so

$$\int_{\mathcal{C}} 2 + xy^2 \, ds = \int_0^{2\pi} 2 + \cos^2(t) \, \sin(t) \, dt = 4\pi.$$

#### **Piecewise-Smooth Curves**



C is **piecewise-smooth** if C is the union of a finite number of smooth curves  $C_1, C_2, \ldots, C_n$ . In that case,

$$\int_{\mathcal{C}} f \, ds = \int_{\mathcal{C}_1} f \, ds + \int_{\mathcal{C}_2} f \, ds + \dots + \int_{\mathcal{C}_n} f \, ds$$

**Example 2:** Let C consist of the arc  $C_1$  of the parabola  $y = x^2$  from (0,0) to (1,1) and the line segment  $C_2$  from (1,1) to (1,2). Evaluate  $\int_{C} 2x \, ds$ .

$$\begin{array}{ll} \mathcal{C}_1 \colon & \vec{\mathsf{r}}_1(t) = \left\langle t, t^2 \right\rangle, \ 0 \leq t \leq 1 \\ & \|\vec{\mathsf{r}}_1'(t)\| = \|\langle 1, 2t \rangle\| = \sqrt{1+4t^2} \end{array} \\ \mathcal{C}_2 \colon & \vec{\mathsf{r}}_2(t) = \langle 1, 1+t \rangle, \ 0 \leq t \leq 1 \\ & \|\vec{\mathsf{r}}_2'(t)\| = \|\langle 0, 1 \rangle\| = 1 \end{array}$$

$$\int_{\mathcal{C}} 2x \, ds = \int_{\mathcal{C}_1} 2x \, ds + \int_{\mathcal{C}_2} 2x \, ds = \underbrace{\int_0^1 2t}_{\int_1^5 \frac{\sqrt{u}}{4} \, du = \frac{u^{3/2}}{6}|_1^5} dt + \underbrace{\int_0^1 2 \, dt}_2 = \frac{5\sqrt{5} + 11}{6}$$

## 2 Vector Line integrals

## Joseph Phillip Brennan Jila Niknejad

An **orientation** of a curve C is a choice of direction along the curve.

("Curve" = I-70; "oriented curve" = I-70 westbound)



The **unit tangent vector** to C points in the direction of motion of the parametrization.

 $\vec{\mathsf{T}}(t) = \frac{\vec{\mathsf{r}}'(t)}{\|\vec{\mathsf{r}}'(t)\|}$ 

The **unit normal vector** to C is orthogonal to  $\vec{T}$ :

$$ec{\mathsf{n}}(t) = rac{ec{\mathsf{T}}'(t)}{\|ec{\mathsf{T}}'(t)\|}$$

 $\operatorname{Note:} \underbrace{\frac{d}{dt} \left( \|T\|^2 \right)}_{=0} = \frac{d}{dt} (T(t) \cdot T(t)) = \underbrace{\frac{2T(t) \cdot T'(t)}{T(t) \cdot T'(t) + T'(t)}}_{T(t) \cdot T'(t) + T'(t) \cdot T(t)} \operatorname{So} T(t) \perp T'(t).$ 



#### Vector Line Integrals



The **tangential component** of a vector field  $\vec{F}$  at a point *P* on a curve *C* is the part of  $\vec{F}$  in the direction of the unit tangent vector:

$$\vec{\mathsf{F}}(P)\cdot\vec{\mathsf{T}}(P)=\|\vec{\mathsf{F}}(P)\|\cos( heta)$$

We can measure "how much  $\vec{F}$  pushes an object moving along C" by the integral of the tangential component:

 $\int_{\mathcal{C}} (\vec{\mathsf{F}} \cdot \vec{\mathsf{T}}) \, ds.$ 

This (scalar) quantity is the **vector line integral** of  $\vec{F}$  along C.

#### Vector Line Integrals

The vector line integral of a vector field  $\vec{F}$  over an oriented curve  $\mathcal{C}$  is

$$\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = \int_{\mathcal{C}} (\vec{\mathsf{F}} \cdot \vec{\mathsf{T}}) \, ds.$$

To compute the integral, let  $\vec{r}$  be a parameterization, so that

$$(\vec{\mathsf{F}} \cdot \vec{\mathsf{T}}) \, ds = \left(\vec{\mathsf{F}}(\vec{\mathsf{r}}(t)) \cdot \frac{\vec{\mathsf{r}}'(t)}{\|\vec{\mathsf{r}}'(t)\|}\right) \, \|\vec{\mathsf{r}}'(t)\| \, dt = \vec{\mathsf{F}}(\vec{\mathsf{r}}(t)) \cdot \vec{\mathsf{r}}'(t) \, dt$$

#### Vector Line Integral Formula

Let C be an oriented curve with a parametrization  $\vec{r}(t)$  for  $a \le t \le b$ . Assume that  $\vec{r}$  is **regular**, i.e.,  $\vec{r}'(t) \ne 0$  for all  $t \in [a, b]$ . Then

$$\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{r} = \int_{a}^{b} \vec{\mathsf{F}}(\vec{r}(t)) \cdot \vec{r}'(t) dt.$$

### The Effects of Reversing Orientation

Let curve C be parametrized both by  $\vec{r}(t)$ ,  $a \le t \le b$ , and  $\vec{q}(u)$ ,  $c \le u \le d$ .

1. Scalar line integrals are the same, no matter whether  $\vec{r}$  and  $\vec{q}$  have the same or opposite orientations:

$$\int_{\mathcal{C}} f \, ds = \int_{a}^{b} f(\vec{r}(t)) \, \|\vec{r}'(t)\| \, dt = \int_{c}^{d} f(\vec{q}(u)) \, \|\vec{q}'(u)\| \, du.$$

(Principle: The area of a wall is the same on both sides!)

2. Vector line integrals depend on orientation.

Same: 
$$\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{r} = \int_{a}^{b} \vec{\mathsf{F}}(\vec{r}(t)) \cdot \vec{r}'(t) dt = \int_{c}^{d} \vec{\mathsf{F}}(\vec{q}(u)) \cdot \vec{q}'(u) du$$

Opposite:  $\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{r} = \int_{a}^{b} \vec{\mathsf{F}}(\vec{r}(t)) \cdot \vec{r}'(t) dt = -\int_{c}^{d} \vec{\mathsf{F}}(\vec{\mathsf{q}}(u)) \cdot \vec{\mathsf{q}}'(u) du$ 

**Example 3:** Let  $\vec{F}(x, y, z) = \langle x^2, y^2, yz \rangle$  and let C be parametrized by  $\vec{r}(t) = \langle \cos(t), \sin(t), t \rangle$  on  $[0, \pi]$ . Evaluate  $\int_{C} \vec{F} \cdot d\vec{r}$ .

$$\frac{\text{Solution:}}{\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}} = \int_{0}^{\pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

$$= \int_{0}^{\pi} \langle \cos^{2}(t), \sin^{2}(t), \sin(t)t \rangle \cdot \langle -\sin(t), \cos(t), 1 \rangle dt$$

$$= \int_{0}^{\pi} \underbrace{-\sin(t)\cos^{2}(t)dt}_{u=\cos(t), du=-\sin(t)dt} + \int_{0}^{\pi} \underbrace{\sin^{2}(t)\cos(t)dt}_{u=\sin(t), du=\cos(t)dt} + \int_{0}^{\pi} \underbrace{t\sin(t)dt}_{u=t, dv=\sin(t)dt}$$

$$= \frac{\cos^{3}(t)}{3} + \frac{\sin^{3}(t)}{3} - t\cos(t) + \sin(t) \Big]_{0}^{\pi} = \pi - \frac{2}{3}$$

#### Notation for Line Integrals

Let  $\vec{F}(x, y, z) = \langle P(x, y, z), Q(x, y, z), R(x, y, z) \rangle$  be a vector field and C a curve parametrized by  $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$  for [a, b]. There are many different ways to write the line integral of  $\vec{F}$  over C:

• Vector Differential Form: 
$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} \vec{F} \cdot \vec{T} \, ds$$
  
• Parametric Vector Evaluation: 
$$\int_{-}^{b} \vec{F}(x(t), y(t), z(t)) \cdot \vec{r}'(t) \, ds$$

• Parametric Scalar Evaluation:  

$$\int_{a}^{b} \left( P(x(t), y(t), z(t))x'(t) + Q(x(t), y(t), z(t))y'(t) + R(x(t), y(t), z(t))z'(t) \right) dt$$

• Scalar Differential Form: 
$$\int_{\mathcal{C}} P \, dx + Q \, dy + R \, dz$$

# 3 Work as a Vector Line Integral

## by Joseph Phillip Brennan Jila Niknejad

### Work as a Line Integral

Let C be a smooth curve parametrized by  $\vec{r}(t)$  on [a, b]. Let  $\vec{F}$  be a continuous vector field over a region containing C.

If  $\vec{F}$  measures force, then the work done on an object that moves from  $\vec{r}(a)$  to  $\vec{r}(b)$  along C is

 $\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}}.$ 

- Work measures the energy expended by the field in moving the object,
- Work can be negative (which indicates that the object expends energy in moving against the field).
- If  $\vec{F}$  is constant, then work is just  $\vec{F} \cdot \overrightarrow{PQ}$ , where  $P = \vec{r}(a)$  and  $Q = \vec{r}(b)$ .

#### Flux Across a Plane Curve (Optional)

Work is the integral of force **along** a curve C (in the tangent direction). What about the integral of  $\vec{F}$  across C (i.e., in the normal direction)? Suppose C is parametrized by  $\vec{r}(t) = \langle x(t), y(t) \rangle$ . Then

$$ec{\mathsf{n}}(t) = \overbrace{\langle y'(t), -x'(t) 
angle}^{ec{\mathsf{N}}} \\ \|ec{\mathsf{r}}'(t)\|$$

is a unit normal vector to C at  $\vec{r}(t)$ . (So is  $-\vec{n}(t)$ .)



The flux across  ${\cal C}$  is the line integral of the normal component  $\vec{F}\cdot\vec{n}$ :

$$\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot \vec{\mathsf{n}} \, ds = \int_{a}^{b} \vec{\mathsf{F}} \left( \vec{\mathsf{r}}(t) \right) \cdot \vec{\mathsf{N}}(t) \, dt$$

Flux measures flow of the field across  ${\cal C}$  in the direction of  $\vec{n}.$