Section 16.2
 Line Integrals

Scalar Line Integrals

Vector Line integrals
Work as a Vector Line Integral

1 Scalar Line Integrals

Scalar Line Integrals

Let \mathcal{C} be a smooth curve in \mathbb{R}^{2}, and let $f(x, y)$ be a scalar-valued function.

The line integral $\int_{\mathcal{C}} f(x, y) d s$ is defined as the net area under the graph of f and over \mathcal{C}.

- Link
- When $f(x, y)<0$, the area under \mathcal{C} and over the graph $f(x, y)$ contributes negatively to the integral.
- If $\mathcal{C}=[a, b]$ is a segment of the x-axis, then $\int_{\mathcal{C}} f(x, y) d s=\int_{a}^{b} f(x, 0) d x$.

Thus, single integrals are special cases of line integrals.

Scalar Line Integrals

To calculate the area under the surface $f(x, y)$ above a curve \mathcal{C} :
(i) Parametrize \mathcal{C} by $\vec{r}(t)$ for $a \leq t \leq b$.
(ii) Subdivide $[a, b]$ into N subintervals of length Δt.

Let $P_{i}=\vec{r}\left(t_{i}^{*}\right)$ be a point in the subcurve \mathcal{C}_{i} on $\left[t_{i-1}, t_{i}\right]$.

(iii) The length of each subcurve is $\Delta s_{i} \approx\left\|\vec{r}^{\prime}\left(t_{i}\right)\right\| \Delta t$. Let $N \rightarrow \infty$ to get the exact area:
Area $=\int_{\mathcal{C}} f(x, y) d s=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} f\left(P_{i}\right)\left\|\vec{r}^{\prime}\left(t_{i}\right)\right\| \Delta t=\int_{a}^{b} f(\vec{r}(t))\left\|\vec{r}^{\prime}(t)\right\| d t$

Scalar Line Integral Formula

If \mathcal{C} is a smooth curve in \mathbb{R}^{2} parametrized by a function $\vec{r}(t)$, and f is continuous on \mathcal{C}, then

$$
\int_{\mathcal{C}} f(x, y) d s=\int_{a}^{b} f(\vec{r}(t))\left\|\vec{r}^{\prime}(t)\right\| d t .
$$

- The same formula works for curves in \mathbb{R}^{n} (for $n=2,3, \ldots$):

$$
\int_{\mathcal{C}} f d s=\int_{\mathcal{C}} f\left(x_{1}, \ldots, x_{n}\right) d s=\int_{a}^{b} f(\vec{r}(t))\left\|\vec{r}^{\prime}(t)\right\| d t
$$

- The symbol $d s=\left\|\vec{r}^{\prime}(t)\right\| d t$ is called the arc length element. It represents a little bit of the arc length of the curve.

Scalar Line Integrals: Examples

Example 1: Evaluate $\int_{\mathcal{C}} 2+x^{2} y d s$, where \mathcal{C} is the unit circle. Solution:

Step 1: Parametrize \mathcal{C} by $\vec{r}(t)=\langle\cos (t), \sin (t)\rangle$ for $t \in[0,2 \pi]$.
Step 2: Calculate $\left\|\overrightarrow{\mathbf{r}}^{\prime}(t)\right\|=\sqrt{\sin ^{2}(t)+\cos ^{2}(t)}=1$.
Step 3: The arc length element is $d s=\left\|\vec{r}^{\prime}(t)\right\| d t=d t$, so

$$
\int_{\mathcal{C}} 2+x y^{2} d s=\int_{0}^{2 \pi} 2+\cos ^{2}(t) \sin (t) d t=4 \pi
$$

Piecewise-Smooth Curves

\mathcal{C} is piecewise-smooth if \mathcal{C} is the union of a finite number of smooth curves $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{n}$. In that case,

$$
\int_{\mathcal{C}} f d s=\int_{\mathcal{C}_{1}} f d s+\int_{\mathcal{C}_{2}} f d s+\cdots+\int_{\mathcal{C}_{n}} f d s
$$

Example 2: Let \mathcal{C} consist of the $\operatorname{arc} \mathcal{C}_{1}$ of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ and the line segment \mathcal{C}_{2} from $(1,1)$ to $(1,2)$. Evaluate $\int_{\mathcal{C}} 2 x d s$.

$$
\begin{array}{lll}
\mathcal{C}_{1}: & \overrightarrow{\mathrm{r}}_{1}(t)=\left\langle t, t^{2}\right\rangle, 0 \leq t \leq 1 & \mathcal{C}_{2}: \\
& \left\|\overrightarrow{\mathrm{r}}_{2}(t)=\langle 1,1+t\rangle=\right\|\langle 1,2 t\rangle \|=\sqrt{1+4 t^{2}} & \\
& \left\|\overrightarrow{\mathrm{r}}_{2}^{\prime}(t)\right\|=\|\langle 0,1\rangle\|=1
\end{array}
$$

$$
\int_{\mathcal{C}} 2 x d s=\int_{\mathcal{C}_{1}} 2 x d s+\int_{\mathcal{C}_{2}} 2 x d s=\underbrace{\int_{0}^{1} 2 t \overbrace{\sqrt{1+4 t^{2}}}^{u=1+4 t^{2}, d u=8 t d t}}_{\int_{1}^{5} \frac{\sqrt{4}}{4} d u=\left.\frac{u^{3} / 2}{6}\right|_{1} ^{5}} d t+\underbrace{\int_{0}^{1} 2 d t}_{2}=\frac{5 \sqrt{5}+11}{6}
$$

2 Vector Line integrals

An orientation of a curve \mathcal{C} is a choice of direction along the curve.

$$
\begin{aligned}
& \text { ("Curve" }=I-70 \text {; "oriented curve" }=I-70 \\
& \text { westbound) }
\end{aligned}
$$

The unit tangent vector to \mathcal{C} points in the direction of motion of the parametrization.

$$
\overrightarrow{\mathrm{T}}(t)=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}
$$

The unit normal vector to \mathcal{C} is orthogonal to $\overrightarrow{\mathrm{T}}$:

$$
\begin{aligned}
& \vec{n}(t)=\frac{\overrightarrow{T^{\prime}}(t)}{\left\|\overrightarrow{T^{\prime}}(t)\right\|} \\
& \text { Note: } \underbrace{\frac{d}{d t}\left(\|T\|^{2}\right.}_{=0})=\frac{d}{d t}(T(t) \cdot T(t))=\underbrace{2 T(t) \cdot T^{\prime}(t)}_{T(t) \cdot T^{\prime}(t)+T^{\prime}(t) \cdot T(t)} \text { So } T(t) \perp T^{\prime}(t) \text {. }
\end{aligned}
$$

Vector Line Integrals

The tangential component of a vector field $\overrightarrow{\mathrm{F}}$ at a point P on a curve \mathcal{C} is the part of \vec{F} in the direction of the unit tangent vector:

$$
\overrightarrow{\mathrm{F}}(P) \cdot \overrightarrow{\mathrm{T}}(P)=\|\overrightarrow{\mathrm{F}}(P)\| \cos (\theta)
$$

We can measure "how much \vec{F} pushes an object moving along \mathcal{C} " by the integral of the tangential component:

$$
\int_{\mathcal{C}}(\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{~T}}) d s
$$

This (scalar) quantity is the vector line integral of $\overrightarrow{\mathrm{F}}$ along \mathcal{C}.

Vector Line Integrals

The vector line integral of a vector field $\overrightarrow{\mathrm{F}}$ over an oriented curve \mathcal{C} is

$$
\int_{\mathcal{C}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}=\int_{\mathcal{C}}(\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{~T}}) d s
$$

To compute the integral, let \vec{r} be a parameterization, so that

$$
(\vec{F} \cdot \overrightarrow{\mathrm{~T}}) d s=\left(\overrightarrow{\mathrm{F}}(\vec{r}(t)) \cdot \frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}\right)\left\|\vec{r}^{\prime}(t)\right\| d t=\overrightarrow{\mathrm{F}}(\overrightarrow{\mathrm{r}}(t)) \cdot \vec{r}^{\prime}(t) d t
$$

Vector Line Integral Formula

Let \mathcal{C} be an oriented curve with a parametrization $\vec{r}(t)$ for $a \leq t \leq b$. Assume that \vec{r} is regular, i.e., $\vec{r}^{\prime}(t) \neq 0$ for all $t \in[a, b]$. Then

$$
\int_{\mathcal{C}} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t
$$

The Effects of Reversing Orientation

Let curve \mathcal{C} be parametrized both by $\vec{r}(t)$, $a \leq t \leq b$, and $\overrightarrow{\mathrm{q}}(u)$, $c \leq u \leq d$.

1. Scalar line integrals are the same, no matter whether \vec{r} and \vec{q} have the same or opposite orientations:

$$
\int_{\mathcal{C}} f d s=\int_{a}^{b} f(\overrightarrow{\mathrm{r}}(t))\left\|\overrightarrow{\mathrm{r}}^{\prime}(t)\right\| d t=\int_{c}^{d} f(\overrightarrow{\mathrm{q}}(u))\left\|\overrightarrow{\mathrm{q}}^{\prime}(u)\right\| d u
$$

(Principle: The area of a wall is the same on both sides!)
2. Vector line integrals depend on orientation.

Same: $\quad \int_{\mathcal{C}} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t=\int_{c}^{d} \vec{F}(\vec{q}(u)) \cdot \vec{q}^{\prime}(u) d u$
Opposite: $\quad \int_{\mathcal{C}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}=\int_{a}^{b} \overrightarrow{\mathrm{~F}}(\overrightarrow{\mathrm{r}}(t)) \cdot \vec{r}^{\prime}(t) d t=-\int_{c}^{d} \overrightarrow{\mathrm{~F}}(\overrightarrow{\mathrm{q}}(u)) \cdot \vec{q}^{\prime}(u) d u$

Example 3: Let $\vec{F}(x, y, z)=\left\langle x^{2}, y^{2}, y z\right\rangle$ and let \mathcal{C} be parametrized by $\vec{r}(t)=\langle\cos (t), \sin (t), t\rangle$ on $[0, \pi]$. Evaluate $\int_{\mathcal{C}} \vec{F} \cdot d \vec{r}$.
Solution:

$$
\begin{aligned}
\int_{\mathcal{C}} \vec{F} \cdot d \vec{r} & =\int_{0}^{\pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t \\
& =\int_{0}^{\pi}\left\langle\cos ^{2}(t), \sin ^{2}(t), \sin (t) t\right\rangle \cdot\langle-\sin (t), \cos (t), 1\rangle d t \\
& =\int_{0}^{\pi} \underbrace{-\sin (t) \cos ^{2}(t) d t}_{u=\cos (t), d u=-\sin (t) d t}+\int_{0}^{\pi} \underbrace{\sin ^{2}(t) \cos (t) d t}_{u=\sin (t), d u=\cos (t) d t}+\int_{0}^{\pi} \underbrace{t \sin (t) d t}_{u=t, d v=\sin (t) d t} \\
& \left.=\frac{\cos ^{3}(t)}{3}+\frac{\sin ^{3}(t)}{3}-t \cos (t)+\sin (t)\right]_{0}^{\pi}=\pi-\frac{2}{3}
\end{aligned}
$$

Notation for Line Integrals

Let $\vec{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$ be a vector field and \mathcal{C} a curve parametrized by $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $[a, b]$. There are many different ways to write the line integral of $\overrightarrow{\mathrm{F}}$ over \mathcal{C} :

- Vector Differential Form: $\int_{\mathcal{C}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}}=\int_{\mathcal{C}} \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{T}} d s$
- Parametric Vector Evaluation: $\int_{a}^{b} \vec{F}(x(t), y(t), z(t)) \cdot \vec{r}^{\prime}(t) d t$
- Parametric Scalar Evaluation:

$$
\begin{aligned}
& \int_{a}^{b}\left(P(x(t), y(t), z(t)) x^{\prime}(t)+Q(x(t), y(t), z(t)) y^{\prime}(t)+\right. \\
& \left.R(x(t), y(t), z(t)) z^{\prime}(t)\right) d t
\end{aligned}
$$

- Scalar Differential Form: $\int_{\mathcal{C}} P d x+Q d y+R d z$

3 Work as a Vector Line Integral

Work as a Line Integral

Let \mathcal{C} be a smooth curve parametrized by $\vec{r}(t)$ on $[a, b]$. Let \vec{F} be a continuous vector field over a region containing \mathcal{C}.
If \vec{F} measures force, then the work done on an object that moves from $\vec{r}(a)$ to $\vec{r}(b)$ along \mathcal{C} is

$$
\int_{\mathcal{C}} \overrightarrow{\mathrm{F}} \cdot d \overrightarrow{\mathrm{r}} .
$$

- Work measures the energy expended by the field in moving the object,
- Work can be negative (which indicates that the object expends energy in moving against the field).
- If $\overrightarrow{\mathrm{F}}$ is constant, then work is just $\overrightarrow{\mathrm{F}} \cdot \overrightarrow{P Q}$, where $P=\vec{r}(a)$ and $Q=\vec{r}(b)$.

Flux Across a Plane Curve (Optional)

Work is the integral of force along a curve \mathcal{C} (in the tangent direction).
What about the integral of $\overrightarrow{\mathrm{F}}$ across \mathcal{C} (i.e., in the normal direction)?
Suppose \mathcal{C} is parametrized by $\vec{r}(t)=\langle x(t), y(t)\rangle$. Then

$$
\overrightarrow{\mathrm{n}}(t)=\frac{\overbrace{\left\langle y^{\prime}(t),-x^{\prime}(t)\right\rangle}^{\vec{N}}}{\left\|\overrightarrow{\mathrm{r}}^{\prime}(t)\right\|}
$$

is a unit normal vector to \mathcal{C} at $\vec{r}(t)$. (So is $-\vec{n}(t)$.)
The flux across \mathcal{C} is the line integral of the normal component $\vec{F} \cdot \vec{n}$:

$$
\int_{\mathcal{C}} \overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{n}} d s=\int_{a}^{b} \overrightarrow{\mathrm{~F}}(\overrightarrow{\mathrm{r}}(t)) \cdot \overrightarrow{\mathrm{N}}(t) d t
$$

Flux measures flow of the field across \mathcal{C} in the direction of \vec{n}.

